вівторок, 2 травня 2017 р.

Тема 5.4. Можливість існування по-заземного життя у Всесвіті. Інші всесвіти.

1.Історичний огляд пошуків позаземного життя. Сучасні наукові дані про існування позаземного життя. 

  Позаземне життя — гіпотетична форма життя, що виникла й існує за межами Землі. Є предметом вивчення космічної біологіїі ксенобіології й одним з вигаданих об'єктів у науковій фантастиці.
Передумови
  Виникнення життя на Землі дає очевидні передумови для припущення про те, що такі ж умови могли скластися на інших планетах. Можна більш-менш визначено говорити тільки про еволюцію життя, яка нагадує земну.
  Радянський астроном Йосип Шкловський обережно припускав, що сприятливі умови для виникнення життя існують на планетах, що обертаються біля холодних і достатньо стабільних зірок спектрального класу G, K, M (близьких за властивостями до Сонця). Число таких зірок у нашій Галактиці можна оцінити як 10 в ступені 9.
Відкриття планет біля інших зоряних систем також побічно вказує на наявність місць у Всесвіті, сприятливих для виникнення життя в «зоні життя». Можливості сучасної астрономії не дозволяють оцінити умови життя на таких планетах, але якщо в майбутньому технічні можливості дозволять визначити, скажімо, наявність кисню в атмосфері, це стане важливим аргументом на користь доказів наявності життя за межами Землі.
Наявність на Землі форм життя, які можуть зберегти здатність до розмноження після перебування в екстремальних умовах (витримувати високі перепади температуртиску, несприятливе середовище) дозволяє говорити про те, що життя може зародитися і зберегтися в умовах далеких від земних.
  Можливий доказ існування життя поза Землею має не тільки суто теоретичне значення. Однією з поширених теорій, що пояснюють виникнення життя на Землі, є панспермія. Не слід забувати про те, що життя за межами Землі в наш час не більше ніж наукова гіпотеза. Багато вчених вельми скептично ставляться як до можливості виявити позаземне життя в доступному для огляду майбутньому, так і можливості розпізнати його, навіть якщо землянам пощастить з ним зіткнутися.


Тема 5.3. Утворення та еволюція Всесвіту


1.Космологія, космологічні парадокси та принципи. Перші моделі будови Всесвіту. Теорія Великого Вибуху. Основні етапи еволюції Всесвіту. 


  Все́світ — весь матеріальний світ, різноманітний за формами, що їх набуває матерія та енергія, включаючи усі галактикизоріпланети та інші космічні тіла. Всесвіт настільки великий, що його розміри важко уявити. Всесвіт, досліджуваний астрономами, — частина матеріального світу, що доступна дослідженню астрономічними засобами, які відповідають досягнутому рівневі розвитку науки (часто цю частину всесвіту називають метагалактикою), простягається на 1,6·1024 км і нікому не відомо, наскільки він великий за межами видимої частини.

  У вужчому сенсі під Всесвітом розуміється світ небесних тіл із законами їхнього руху та розвитку, їхній розподіл у часі і просторі. Матерія у Всесвіті розподілена вкрай нерівномірно, значна частина її зосереджена в окремих більш або менш щільних космічних тілах: галактикахзорях і туманностях. Відстані між окремими об'єктами як правило, вимірюють у світлових роках, тобто відстанях, які світло проходить за один рік (від Сонця до найближчої до нас зорі воно йде понад 4 роки).

  Небесні тіла, з яких складається Всесвіт, вивчає наука астрономіяАстрофізика намагається зрозуміти явища і процеси, що відбуваються у Всесвіті. Теорії еволюції Всесвіту та гіпотези його подальшого розвитку розробляються в рамках космології. Наукове дослідження Всесвіту опирається на так званий космологічний принцип, який стверджує, що закони природи у всьому об'ємі Всесвіту однакові.
Будова Всесвіту

  Серед небесних тіл найвиразніше виділяються зорі, завдяки світлу, яке вони випромінюють. Зоряна речовина перебуває у стані плазми — електропровідного намагніченого середовища. У надрах зірок температура сягає десятків мільйонів градусівЕволюція зірок включає такі фази: протозоря, утворення в центрі цієї формації термоядерного вогнища, основна фаза вигорання водню у термоядерних реакціях, перетворення зорі в червоного гіганта, а потім — в білого карлика (для зір — аналогів Сонця), колапс масивних зірок з вибухом «наднових» та виникненням нейтронних зірок і колапсарів — «чорних дірок».


Всесвіт

  Деякі зорі мають супутники — планети або подібні до них масивні тіла і утворюють разом з ними системи, аналогічні до нашої Сонячної. При забезпеченні низки сприятливих умов на планетах може виникнути життя, як це має місце на Землі.

  Найближчі до Землі зорі обертаються навколо загального центру мас, утворюючи загалом велетенську зоряну систему — галактику Чумацький Шлях, радіус якої сягає 4·1022 км. Загальна кількість зірок у нашій Галактиці близька до 1011. Тривалість основної фази вигорання водню у термоядерних реакціяхколивається в межах 8·106 — 70·109 років. Окрім нашої Галактики, до якої входить наша Сонячна система, виявлено багато інших галактик та зоряних систем, які утворюють велетенську космічну систему — Метагалактику (декілька мільярдів галактик).

  Зорі та інші астрономічні об'єкти займають тільки незначну частину об'єму Всесвіту. Більшість Всесвіту займає міжзоряний простір — області, заповнені в основному електромагнітним випромінюванням і нейтрино з незначною кількістю атомів баріонної речовини, здебільшого — атомів воднюГустинаВсесвіту в середньому дуже низька — приблизно 9,9·10−30 г/см3. Це відповідає приблизно одному атому гідрогену на кубічний метр.

  Аналіз сучасних астрономічних даних про рух галактичних скупчень виявив його несумісність з уявленнями про кількість речовини у Всесвіті. Однією з теорій, що намагається пояснити розбіжності між спостереженнями та теоретичними розрахунками, є припущення існування у Всесвіті темної матерії та темної енергії. За цією теорією видима баріонна речовина складає тільки приблизно 4 % всієї матерії у Всесвіті.
Склад


  Усі зорі складаються з однакових елементів, які відомі на Землі. Найпоширенішим хімічним елементому Всесвіті є водень, йому поступаються по черзі: гелій, кисень, азот. Повсюди у Всесвіті відбувається обмін речовиною і променевою енергією. Поширеність хімічних елементів у Всесвіті пов'язана з історією їх утворення в процесі нуклеосинтезу.
Розширення


  Всесвіт розширюється. Кількісно це розширення описується законом Габбла, а експериментальне свідчення на користь цього процесу дає червоний зсув. Розширення Всесвіту відбувається не в порожнечу, принаймні наукових свідчень про обмеженість Всесвіту нема. Границі Всесвіту, якщо вони існують, лежать далеко за межами можливостей спостережень. Розширення Всесвіту означає лише те, що відстані між астрономічними об'єктами збільшуються. Це розширення в сучасну еру прискорюється. Питання про те, чи зупиниться воно в далекому майбутньому й перейде в стиснення, залишається дискусійним і залежить від загальної кількості матерії у Всесвіті.

  Найвіддаленішим від Землі зареєстрованим астрономічним об'єктом станом на січень 2011 імовірно є галактика UDFj-39546284, відстань до якої дорівнює 13,2 млрд св.р..
Теорії походження Всесвіту
Теорія Великого вибуху

  Існують різноманітні теорії виникнення Всесвіту, якими намагались обґрунтувати, з чого виник Всесвіт і як він набув сучасних обрисів.

  Основною теорією виникнення Всесвіту вважається теорія про Великий вибух, який відбувся приблизно 13,73 (± 0,12) млрд років тому з подальшим розширенням Всесвіту. У результаті Великого вибуху виникла матеріяпростір і час. Теорія вважає, що після Великого вибуху Всесвіт мав дуже високу температуру. Приблизно через 10 секунд сформувались атомні частинки — протониелектрониі нейтрони. Атоми Водню і Гелію, з яких складаються більшість зірок, утворилися лише через декілька сотень тисяч років після Великого вибуху, коли Всесвіт значно розширився в розмірах і охолов.

  Пропонувалися також і інші теорії, наприклад теорія стаціонарного Всесвіту, яка, втім, втратила прихильників після відкриття реліктового випромінювання в середині 1960-их.

  За підрахунками, якщо Великий вибух відбувся приблизно 14 млрд років тому, Всесвіт мав охолонути до температури близько трьох градусів Кельвіна. За допомогою радіотелескопів були зареєстровані радіошуми, які відповідають даній температурі, на всьому зоряному небі. Вони вважаються відлунням стану Всесвіту через деякий час після Великого вибуху, того часу, коли відбулося утворення нейтральних атомів.
Інфляційна модель


  Теорії інфляції описують передбачувану стадію розширення Всесвіту, що почалася через ~ 10−42 с після Великого Вибуху, що має назву інфляційної стадії. Ця ідея дозволяє пояснити плоску геометрію простору. Крім цього теорія інфляції припускає народження спостережуваного Всесвіту з маленької спочатку причинно-зв'язаної області, що пояснює однорідність і ізотропність Всесвіту. Габблове розширення є рухом по інерції завдяки великій кінетичній енергії, що була накопичена протягом інфляції.

  Будь-яке інфляційне розширення починається з планкових розмірів і часів, коли сучасні закони фізики починають адекватно описувати процеси, які відбуваються в цей момент. Єдина причина прискореного розширення в рамках загальної теорії відносності — це негативний тиск. Такий тиск можна описати скалярним полем, який отримав назву інфлантона. Зокрема, таким же чином можна описати і тиск фізичного вакууму (космологічну константу). В кінці інфляційної стадії це поле повинне розпадатися, в іншому випадку експоненціальне розширення ніколи не закінчиться.

  Основний клас моделей інфляції ґрунтується на припущенні про повільне скочування: потенціал інфлантона повільно зменшується до нульового значення. Початкове значення може задаватися по-різному: це може бути значення початкових квантових збурень, а може бути строго фіксованим. Конкретний вид потенціалу залежить від обраної теорії.

  Теорії інфляції також діляться на нескінченні і скінченні у часі. В теорії з нескінченною інфляцією існують області простору — домени — які почали розширюватися, але через квантові флуктуації повернулися в початковий стан, у якому виникають умови для повторної інфляції. До таких теорій належить будь-яка теорія з нескінченним потенціалом і хаотична теорія інфляції Лінде.

  До теорій зі скінченним часом інфляції належить гібридна модель. У ній існує два види поля: перше, що відповідає за великі енергії (а, отже, за швидкість розширення), а друге за малі, що визначають момент завершення інфляції. У такому випадку квантові флуктуації можуть вплинути тільки на перше поле, але не на друге, а значить і сам процес інфляції скінченний.

  До нерозв'язаних проблем інфляції можна віднести стрибки температури в дуже великому діапазоні, в якийсь момент вона падає майже до абсолютного нуля. У кінці інфляції відбувається повторний нагрів речовини до високих температур. На роль можливого пояснення настільки дивної поведінки пропонується «параметричний резонанс».
Мультивсесвіт

  "Мультивсесвіт ", «Великий Всесвіт», «Мультіверс», «Гіпервсесвіт», «надвсесвіт», — різні переклади англійського терміну multiverse. З'явився він у ході розвитку теорії інфляції.

  Ділянки Всесвіту, розділені відстанями більшими за розмір горизонту подій, еволюціонують незалежно один від одного. Будь який спостерігач бачить тільки ті процеси, які відбуваються в домені, що дорівнює за обсягом сфері з радіусом, що становить відстань до горизонту подій. В епоху інфляції дві ділянки розширення, розділені відстанню близько горизонту, не перетинаються.

  Такі домени можна розглядати як окремі всесвіти, подібні до нашого: вони точно так же однорідні й ізотропні на великих масштабах. Конгломерат таких утворень і є багатосвітом.

  Хаотична теорія інфляції припускає нескінченну різноманітність Всесвітів, кожна з яких може мати відмінні від інших Всесвітів фізичні константи. В іншій теорії Всесвіти розрізняються за квантовим виміром. За визначенням ці припущення не можна експериментально перевірити.
Спостереження

  Інформація, якою володіє людство про Всесвіт як про єдине ціле — результат астрономічних спостережень. І якщо у більшості природних наук різноманітність джерел інформації нічим не обмежена, то в астрономів, у переважній кількості випадків, воно одне — електромагнітне випромінювання. Серед усіх спостережених і спостережуваних властивостей Всесвіту тільки невелика частка фактів інтерпретуються однозначно. Серед них:
Найпоширеніший хімічний елемент — водень.
Закон Габбла з високим ступенем точності лінійний щодо z ~ 0,1.
Реліктове випромінювання флуктує на масштабах четвертого порядку мализни.
Температура реліктового фону залежить від z.
Наявність Lα-лісу у спектрах далеких об'єктів (квазарів) з z>6.
Наявність сильної неоднорідності в розподілі галактик на масштабах < 100 Мпк.

  На 2011 рік основні зусилля астрономів, що працюють в спостерігальній астрономії, спрямовуються у двох напрямках:
історія розвитку Всесвіту від ранніх етапів до наших днів;
космологічна шкала відстаней і пов'язане з нею явище розширення Всесвіту.
Шкала відстаней


  Шкала відстаней — це цілий комплекс завдань з вимірювання відстаней до різних об'єктів. Ми звикли, що на Землі, та і в Сонячній системі, відстань — це параметр, який треба підставити, щоб щось знайти. Але на космологічних масштабах відстань перестає бути просто параметром. Астроном Едвін Габбл сформулював закон загального розбігання галактик (відомий також як Закон Габбла), що пов'язує швидкість розбігання галактик (і їх червоний зсув) з відстанню між ними:
лінії поглинання в спектрах віддалених галактик зміщені в червону смугу;
зі збільшенням відстані цей зсув також збільшується і дорівнює:

де λ — спостережувана довжина хвилі лінії, λ0 — довжина цієї ж хвилі в лабораторії, r — відстань між галактиками, c -швидкість світла, H0 — коефіцієнт пропорційності, сталий на поточну епоху, що має назву сталої Габбла, z — має назву червоного зсуву.

Іноді можна зустріти таке формулювання: швидкість розбігання галактик прямо пропорційна відстані. Але варто пам'ятати, що воно коректне тільки поки вірна формула Доплера для малих швидкостей .

  У Габбла були два ступені шкали відстаней: фундаментальна — метод тригонометричного паралаксу, що випливає з евклідової геометрії, і метод вимірювання за видимим блиском цефеїд. Сьогодні таких ступенів набагато більше і сягають вони набагато далі, дозволяючи вимірювати відстані в мільярди парсек.
Метод тригонометричного паралаксу


Паралакс — кут, на який зсувається об'єкт, якщо розглядати його з двох різних позицій. Що далі розташований об'єкт, тим менше змінюється його візуальна позиція. Що ближча відстань до об'єкта, або що більша відстань між точками спостереження (база), тим більший паралакс. Розрізняють два види паралаксу: річний та груповий.
Річний паралакс — кут, під яким видно середній радіус земної орбіти з центру мас зорі. Через рух Землі орбітою видиме розташування будь-якої зорі на небесній сфері постійно змінюється — зоря описує еліпс, велика піввісь якого дорівнює річному паралаксу. За відомим паралаксом із законів евклідової геометрії можна обчислити відстань до зорі:

де наближена рівність записана для малого кута (в радіанах). Ця формула показує основні труднощі цього методу: зі збільшенням відстані значення паралаксу зменшується і для далеких об'єктів величина паралаксу лежить у межах похибки вимірів.
Вивчення історії розвитку Всесвіту і його великомасштабної структури

  Вкрай важкі завдання — вивчення історії розвитку Всесвіту і проблема виникнення її великомасштабної структури — одночасно є вкрай важливими для всієї астрофізики в цілому: тільки їх вирішення може показати вірність розуміння процесів, що відбуваються в окремих об'єктах та їх об'єднаннях на даний момент.

  Складність полягає в тому, що необхідно спостерігати об'єкти, що народилися в одну і ту ж епоху, але різного віку. Таким чином, з одного боку виникає потреба спостерігати віддалені об'єкти, ослаблені як відстанню, так і тим, що їх спектр разом з вкрай важливою лінією Lα через розширення Всесвіту зміщується в інфрачервоний діапазон, спостереження в якому пов'язані з великими технічними труднощами. З іншого боку в найближчих околицях необхідно спостерігати дуже старі об'єкти, пік світності яких вже минув і зараз вони, з різних причин втративши основне джерело енергії, можуть світити лише завдяки мізерним старим запасам. Іншими словами доводиться спостерігати слабкі об'єкти. У той же час необхідна масовість спостережень, щоб виключити ефекти селекції.

  З технічної точки зору рішення першої проблеми — будівництво великих телескопів. Проте у великого телескопу не може бути великого поля і, отже, він не може забезпечити масовість спостережень. І навпаки: телескоп з широким полем не може забезпечити якісні спостереження слабких об'єктів. Але є й інший шлях, більш творчий: застосування різних методик аналізу вже наявних даних, отриманих з використанням наявних ресурсів. Зазвичай їх застосовують у зв'язці: за допомогою другого способу намічають проблеми і завдання, які потім вирішуються на якісно новому рівні з допомогою найкращих космічних і наземних телескопів.

  Додаткову складність вносить і те, що разом із Всесвітом еволюціонують і об'єкти, за допомогою яких ведуться дослідження. А значить, може скластися ситуація, коли залежності, побудовані на основі сучасного стану об'єктів, перестануть бути адекватними. Щоб уникнути подібного, крім самих об'єктів необхідно ретельно дослідити і метод, за допомогою якого ми хочемо вивчати Всесвіт.

  Типовими об'єктами досліджень в космології є:
Галактики;
Квазари;
Зоряні скупчення;
Гамма-сплески;
Реліктове випромінювання;
Об'єкти, що не проеволюціонували або проеволюціонували слабо (сюди відносять як галактики, так і зорі. Характерною рисою даних об'єктів є їх низька 
металічність. Вони в основному складаються з тієї речовини, з якої складалися найперші зорі і галактики).
Загальні особливості та підходи

  Спостерігати космологічні об'єкти можна різними способами, деякі підходять тільки для одного типу об'єктів, деякі застосовні до всіх. Ті, що характерні для всіх, частково прийшли з зоряної астрономії (такі як метод зоряних підрахунків або порівняння різних ділянок спектра), частково винайдені тільки для потреб космології.

  Загальні проблеми найбільш яскраво проявляються в галактиках. Класично, серед них виділяють чотири типи: 
еліптичні, лінзоподібні, спіральні та неправильні. Ці чотири типи багато в чому схожі, але також багато в чому різні. Факторів, що впливають на еволюцію властивостей окремо взятої галактики — величезна кількість. Все це відбивається на її спектральних і фотометричних характеристиках, причому часові масштаби еволюційних процесів — мільйони років. У результаті спостереження далеких об'єктів не можна співвіднести зі спостереженнями близьких галактик і немає простих механізмів екстраполяції того стану до нинішнього.
Лайман-альфа ліс


  У спектрах деяких далеких об'єктів можна спостерігати велике скупчення сильних абсорбційних ліній на малій ділянці спектра (т. зв. ліс ліній). Ці лінії ототожнюються як лінії 
серії Лаймана, але мають різні червоні зміщення.

  Хмари нейтрального водню ефективно поглинають світло на довжинах хвиль від Lα(1216 Å) до 
межі Лаймана. Випромінювання, спочатку короткохвильове, на шляху до нас через розширення Всесвіту поглинається там, де його довжина хвилі зрівнюється з цим «лісом». Перетин взаємодії дуже великий і розрахунки показують, що навіть малої частки нейтрального водню достатньо для створення великого поглинання в безперервному спектрі.

  При великій кількості хмар нейтрального водню на шляху світла на досить широкому інтервалі спектру утворюється провал. Довгохвильова межа цього інтервалу обумовлена Lα, а короткохвильова залежить від найближчого червоного зсуву, ближче якого середовище іонізоване і нейтрального водню мало. Подібний ефект носить назви ефекту Гана-Петерсона.

  Ефект спостерігається в квазарах з червоним зсувом z>6. Звідси робиться висновок, що епоха іонізації міжгалактичного газу почалася з z≈6.
Гравітаційне лінзування


  До ефектів, спостереження яких можливі також для будь-якого об'єкта (навіть не важливо, щоб він був далеким), необхідно віднести і ефект гравітаційного лінзування. У 
попередньому розділі було зазначено, що за допомогою гравітаційного лінзування будують шкалу відстаней. Це — варіант так званого сильного лінзування, коли кутове розділення зображень джерела можна безпосередньо спостерігати. Однак існує ще й слабке лінзування, з допомогою якого можна дослідити потенціал досліджуваного об'єкта. Так, з його допомогою було встановлено, що скупчення галактик розміром від 10 до 100 Мпк є гравітаційно пов'язаними, тим самим будучи найбільшими стабільними системами у Всесвіті. Також з'ясувалося, що забезпечує цю стабільність маса, що проявляє себе тільки в гравітаційній взаємодії — темна маса або, як її називають в космології, темна матерія.
Порівняння різних ділянок спектру

  До стандартних підходів, що дозволяють прояснити природу будь-якого об'єкта, можна віднести порівняння як спектрів різних, але приналежних до одного класу об'єктів, так і різних частин одного і того ж 
спектру.

  Так, комбінуючи обидва варіанти: спочатку порівнюючи спектри двох різних 
квазарів, а потім порівнюючи окремі ділянки спектру одного і того ж квазару, виявили сильний провал на одній з ультрафіолетових ділянок спектру. Настільки сильний провал міг бути викликаний тільки великою концентрацією пилу, що поглинав випромінювання. Раніше пил намагалися виявити за спектральними лініями, але виділити конкретні серії ліній, що доводили б, що це саме пил, а не домішка важких елементів в газі, не вдавалося. Подальший розвиток цього методу дозволив оцінити темп зореутворення на z від ~2 до ~6
Метод зоряних черпків

Дані про великомасштабну структуру 2df-огляду.

  Першим способом вивчення великомасштабної структури Всесвіту, що досі не втратив своєї актуальності, є так званий метод «зоряних черпків Гершеля». Сутність його полягає в підрахунку кількості об'єктів у різних напрямках. Метод винайдено Вільямом Гершелем наприкінці XVIII сторіччя, коли про існування далеких космічних об'єктів лише здогадувалися, і єдиними об'єктами, доступними для спостережень, були зорі. Сьогодні, природно, рахують не зорі, а позагалактичні об'єкти (квазари, галактики), і крім розподілу за напрямками будують розподіл за червоним зсувом.

  Найбільшими джерелами даних про позагалактичні об'єкти є окремі спостереження конкретних об'єктів, огляди типу SDSS, 
APM, 2df, а також компілятивні бази даних, такі як Ned і Hyperleda. Наприклад, в огляді 2df охоплення неба становило ~ 5 %, середнє z — 0,11 (~ 500 Мпк), кількість об'єктів — ~ 220 000.

  На наведеному малюнку можна бачити, що галактики розташовано в просторі неоднорідно на малих масштабах. Після детальнішого розгляду виявляється, що просторова структура розподілу галактик — чарункова: вузькі стінки з шириною, яка визначається величиною скупчень і надскупчень галактик, а всередині них — порожнини, так звані 
войди.

  Домінує думка, що після переходу до масштабів у сотні мега
парсек, розподіл видимої речовини стає однорідним. Проте однозначної відповіді на це питання поки що не знайдено: застосовуючи різні методики деякі дослідники приходять до висновків про неоднорідність розподілу галактик і в найбільших досліджуваних масштабах . Разом з тим, неоднорідності в розподілі галактик не скасовують факту високої однорідності Всесвіту в початковому стані, що виведено з високої міри ізотропності реліктового випромінювання.

  Водночас встановлено, що розподіл кількості галактик за червоним зсувом має складний характер. Залежність для різних об'єктів різна. Однак для всіх них характерна наявність кількох локальних максимумів
. З чим це пов'язано — поки не зовсім зрозуміло.

  До останнього часу не було ясності в тому, як еволюціонує великомасштабна структура Всесвіту. Проте роботи останнього часу доводять, що першими сформувалися великі галактики, і лише потім — дрібніші (так званий ефект зменшення розміру)
.

  Гамма-сплески — унікальне явище, і загальновизнаної думки щодо його природи не існує. Однак переважна більшість вчених погоджується з твердженням, що предком гамма-сплесків є об'єкти зоряної маси.

  Унікальні можливості застосування гамма-сплесків для вивчення структури Всесвіту полягають у наступному
:
Оскільки предком гамма-сплеску є об'єкт зоряної маси, то і простежити гамма-сплески можна на більшу відстань, ніж квазари, як через більш раннє формування самого предка, так і через малу масу чорної діри квазара, а значить і меншу його світність на той період часу.
Спектр гамма-сплеску — неперервний, тобто не містить спектральних ліній. Це означає, що найвіддаленіші лінії поглинання в спектрі гамма-сплеску — це лінії міжзоряного середовища батьківської галактики. З аналізу цих спектральних ліній можна отримати інформацію про температуру міжзоряного середовища, його 
металічність, ступінь іонізації і кінематику.
Гамма-сплески дають ледь не ідеальний спосіб вивчати міжгалактичне середовище до епохи реіонізаціі, тому що їх вплив на міжгалактичне середовище на 10 порядків менший, ніж квазарів, через малий час життя джерела.
Якщо післясвітіння гамма-сплеску в радіодіапазоні досить сильне, то за лінією 21 см можна судити про стан різних структур нейтрального водню в міжгалактичному середовищі поблизу від галактики-предка гамма-сплеску.
Детальне вивчення процесів формування зірок на ранніх етапах розвитку Всесвіту за допомогою гамма-сплесків сильно залежить від обраної моделі природи явища, але якщо набрати достатню статистику і побудувати розподіл характеристик гамма-сплесків в залежності від 
червоного зсуву, то, залишаючись в рамках досить загальних положень, можна оцінити темп зореутворення і функцію мас зірок, що народжуються.
  Якщо прийняти припущення, що гамма-сплеск — це вибух 
наднової зорі, то можна вивчати історію збагачення Всесвіту важкими металами.
Гамма-сплеск може слугувати вказівником на дуже слабку карликову галактику, яку важко виявити при «масовому» спостереженні неба.

  Основною проблемою гамма-сплесків є їх спорадичність і стислість часу, коли післясвітіння сплеску можна спостерігати спектроскопічно.
Теоретичні моделі

  Сучасні космологічні моделі дуже складні, а іноді використовують поки непідтверджені гіпотези. Наприклад, до Всесвіту застосовують рівняння 
ЗТВ, хоча ЗТВ — це теорія, добре підтверджена тільки в масштабах Сонячної системи, і її використання в масштабі галактик і Всесвіту в цілому може бути піддано сумніву. Космологічні моделі були б набагато простіші, якби протон не був стабільною частинкою і розпадався б, чого сучасні експерименти у фізичних лабораторіях не підтверджують; і цей список можна продовжити. Але на даний момент з таким станом справ доводиться миритися, оскільки кращого пояснення спостереженням поки не існує.

Космологія — швидше описова наука, ніж передбачувальна. Доводиться звертатися до певних припущень, принципів, у тому числі й філософських. Зараз практично всі згодні, що будь-яка модель Всесвіту повинна задовольняти так званому 
«космологічному принципу». Відповідно до цього принципу у великих просторових масштабах у Всесвіті немає виділених областей і напрямків. Наслідком такого постулату є однорідність та ізотропності матерії у Всесвіті на великих масштабах (> 100 Мпк).

  Просторова однорідність та ізотропність не забороняє неоднорідності в часі, тобто існування виділених послідовностей подій, доступних всім спостерігачам. Прихильники теорій стаціонарного Всесвіту іноді формулюють «досконалий космологічний принцип», згідно з яким чотиривимірний простір-час повинен мати властивості однорідності й ізотропності. Однак еволюційні процеси, що спостерігаються у Всесвіті, очевидно не узгоджуються з таким космологічним принципом.

  У загальному випадку для побудови моделі застосовуються такі теорії та розділи фізики:
Рівноважна статистична фізика, її основні поняття і принципи, а також теорія релятивістського газу.
Теорія гравітації (зазвичай загальна теорія відносності).
Деякі дані з фізики елементарних частинок: список основних частинок, їхні характеристики, типи взаємодії, закони збереження.

  Комбінуючи ці фактори намагаються в першу чергу пояснити три фундаментальні явища: розширення Всесвіту, великомасштабну структуру Всесвіту і поширеність хімічних елементів. Основними теоріями, що описують всі ці три явища сьогодні є:
Теорія Великого Вибуху.
Описує хімічний склад Всесвіту.Теорія стадії інфляції.
Пояснює причину розширення.Модель розширення Фрідмана.
Описує розширення.Ієрархічна теорія.
Описує великомасштабну структуру.


  Зелений колір означає абсолютно панівні теорії, бурштиновий — визнана багатьма, але широко обговорюється, червоний — відчуває великі проблеми останнім часом, але підтримується багатьма теоретиками.
Модель Всесвіту, що розширюється

  Модель Всесвіту описує сам факт розширення. У загальному випадку ігнорується, коли і чому Всесвіт розпочав розширюватися, тобто теорія Великого Вибуху — лише окремий випадок моделі Всесвіту, що розширюється. В основі більшості моделей Всесвіту лежить ЗТВ і її геометричний погляд на природу гравітації. Середовище, що ізотропно розширюється зручно розглядати в системі координат, що розширюються разом з матерією. Таким чином, розширення Всесвіту формально зводиться до зміни масштабного фактора всієї координатної сітки, у вузлах якої «посаджені» галактики. Таку систему координат називають супутньою. Початок відліку зазвичай прикріплюють до спостерігача.

  Єдиної точки зору, чи є Всесвіт дійсно нескінченним або кінцевим в просторі та об'ємі, не існує. Тим не менш, Всесвіт, що включає всі місця розташування, які можуть впливати на нас з моменту Великого Вибуху, кінцевий, оскільки кінцева 
швидкість світла та існував Великий вибух.
Теоретична доля Всесвіту

  Всесвіт і в наші дні продовжує свою еволюцію, оскільки еволюціонують його частини. Час цієї еволюції для кожного типу об'єктів відрізняється більше, ніж на порядок. І коли життя об'єктів одного типу закінчується, то в інших усе лише починається. Це дозволяє розбити еволюцію Всесвіту на епохи. Однак кінцевий вид еволюційного ланцюга залежить від швидкості і прискорення розширення: при рівномірній або майже рівномірній швидкості розширення будуть пройдені всі етапи еволюції і будуть вичерпані всі запаси енергії. Цей варіант розвитку називається тепловою смертю.

  Якщо швидкість буде все наростати, то, починаючи з певного моменту, сила, що розширює Всесвіт, спочатку перевищить гравітаційні сили, які утримують галактики в скупченнях. За ними розпадуться галактики і зоряні скупчення. І, нарешті, останніми розпадуться найбільш тісно пов'язані зоряні системи. Через деякий час, електромагнітні сили не зможуть утримувати від розпаду планети і дрібніші об'єкти. Світ знову буде існувати у вигляді окремих атомів. На наступному етапі розпадуться і окремі атоми. Що буде після цього, точно сказати неможливо: на цьому етапі перестає працювати сучасна фізика.

Сценарій, що описаний вище — це сценарій Великого розриву. Існує і протилежний сценарій — Велике стиснення. Якщо розширення Всесвіту сповільниться, то в майбутньому воно припиниться і почнеться стиснення. Еволюція і вигляд Всесвіту будуть визначатися космологічними епохами до того моменту, поки її радіус не стане у п'ять разів менший від сучасного. Тоді всі скупчення у Всесвіті утворюють єдине мегаскупчення, проте галактики не втратять свою індивідуальність: в них все також буде відбуватися народження зірок, будуть спалахувати наднові і, можливо, буде розвиватися біологічне життя. Всьому цьому прийде кінець, коли Всесвіт скоротиться ще в 20 раз і стане у 100 разів меншим, ніж зараз; в той момент Всесвіт буде являти собою одну величезну галактику.

  Температура реліктового фону досягне 274К і на планетах земного типу почне танути лід. Подальше стиснення призведе до того, що випромінювання реліктового фону затьмарить навіть центральне світило планетарної системи, випалюючи на планетах останні паростки життя. А незабаром після цього випаруються або будуть розірвані на шматки самі зорі і планети. Стан Всесвіту буде схожим на те, що було в перші моменти його зародження. Подальші події будуть нагадувати ті, що відбувалися на початку, але промотуючись в зворотному порядку: атоми розпадаються на атомні ядра й електрони, починає домінувати випромінювання, потім починають розпадатися атомні ядра на 
протони і нейтрони, потім розпадаються й самі протони і нейтрони на окремі кварки, відбувається велике об'єднання. У цей момент, як і в момент Великого вибуху, перестають працювати відомі нам закони фізики і подальшу долю Всесвіту передбачити неможливо.

Тема 5.2. Галактики і Всесвіт

1. Класифікація галактик. Типи, склад і структура галактик


  Послідовність Хаббла являє собою процес поділу галактик Всесвіту, запропонований 1936 року Едвіном Хабблом. З того часу років на суд запропоновано більш розгорнуті системи класифікації, однак запропонована Хабблом досі вважається затребуваною.

Класифікація галактик, запропонована у 1936 році Едвіном Хабблом.

 Еліптична галактика (NGC4150)
  Тип галактик (E0-E7) являє собою галактики з еліптичної структурою і характеризуються чіткою симетрією розташування зір при відсутності спостережуваного ядра. Наявна в назві цифра показує ступінь ексцентриситету: галактики E0 мають правильну кулясту форму, зі зростанням величини збільшується ступінь сплюснутості. Це число є показником спостережуваної форми галактики (у проекції на досліджувану площину), а не справжньої її форми (у просторі), що часто заважає визначенню морфології.
Тип галактик (S0) являє собою галактики з лінзоподібною структурою, що мають форму диска з чітко окресленою центральною опуклістю (балджем), однак у них не спостерігаються спіральні рукави.

  Спіральна галактика (NGC1232)
  Типи галактик (Sa, Sb, Sc) являє собою галактики зі спіральною структурою, що мають в своєму складі Балдж і зовнішній диск e поєднанні з рукавами. Літера визначає ступінь щільності розташування рукавів. У випадку з галактиками, які мають спіральну структуру, розмір їх балджа і товщина рукавів зменшуються «зліва направо», а концентрація пилу при цьому підвищується.
Тип галактик (SBa, SBb, SBc) являє собою галактики зі спіральною структурою і баром. У структурі галактик такого виду можна спостерігати яскравий бар, який перетинає балдж та з'єднує його з рукавами, що розходяться.
Тип галактик (Irr) являє собою галактики неправильної форми, які не підпадають ні під який з існуючих класів. Галактики виду IrrI мають залишки спіральної структури, а види галактик IrrII демонструють абсолютно неправильну форму. Прикладом неправильної галактики є M82.

  Лінзоподібна галактика (NGC5010)
Т  ип галактик (d) являє собою карликові галактики. Це маленькі за розмірами галактики, які складаються з декількох мільярдів зір (така кількість зір є дуже малою в порівнянні з нашою Галактикою, яка налічує від двохсот до чотирьохсот мільярдів зір). До карликових відносять галактики зі світністю 109 L☉ або -16m абсолютної зоряної величини (це приблизно в сто разів менше яскравості Чумацького Шляху).


2.Радіогалактики. Квазари

Радіогалактика — тип галактик, які характерні суттєво більшим радіовипромінюванням, ніж звичайні галактики. Радіовипромінювання найбільш «яскравих» радіогалактик перевищує їх оптичну світність. Джерела випромінювання радіогалактик, як правило, мають декілька компонентів (ядро, гало, радіовикиди).
Серед відомих радіогалактик можна виділити:
Лебідь A — потужне позагалактичне джерело радіовипромінювання
Центавр A (NGC 5128) — найближча до Сонячної системирадіогалактика (відстань 4 Мпк)
Діва А (NGC 4486M87) — одна з наймасивніших галактик в скупченні Діви
Піч А (NGC 1316)

  Кваза́ри (англ. quasars, скор. від англ. quasi-stellar radio source — квазізоряне радіоджерело) — позагалактичні об'єкти, які мають зореподібні зображення й потужні емісійні лінії з великим червоним зміщенням у спектрі.
  Квазари було виявлено 1963 року як джерела радіовипромінювання з дуже малими кутовими розмірами (менше за 10"). Потім вони були ототожнені з тьмяними оптичними об'єктами зоряної величини 16-18m. Згодом було виявлено джерела, які за оптичними характеристиками від квазарів не відрізнялися, проте не мали радіовипромінювання. Сьогодні квазарами називають обидва типи об'єктів: перші — радіоголосними (або радіоактивними), а інші — радіотихими (або радіоспокійними). Радіоголосні квазари становлять декілька відсотків загальної кількості квазарів.
  У спектрах багатьох квазарів, крім емісійних ліній, є одна або декілька систем ліній поглинання, червоні зміщення яких менші, ніж зсув емісійних ліній. Ці лінії поглинання формуються на шляху між квазарами й спостерігачем. Квазари мають найвищу світність серед усіх об'єктів Всесвіту, наприклад, потужність випромінювання квазарів S5 0014+81 в оптичному діапазоні перевищує 5×1014L. Висока світність квазарів дає змогу спостерігати їх на дуже великих відстанях. Виявлено квазари з червоним зсувом z>4.
Квазари виявляють змінність у широкому часовому діапазоні — від кількох днів до кількох років. Амплітуда змінності в фільтрі В зазвичай 0,5 — 1,5m, хоча в деяких квазарів вона не перевищує 0,1m. Проте є група оптично змінних квазарів, зміни блиску яких досягають 6,0m. Оптично змінні квазари часто об'єднують з лацертидами в один клас — блазари. Квазари належать до галактик з активними ядрами. Більшість із них пов'язана зі спіральними галактиками. За природою квазари, напевне, близькі до галактик сейфертівських, до яких вони примикають з боку високих світностей.

  На початку XXI ст. встановлено, що квазари — це галактики, які мають в центрі надмасивні чорні діри.
 

Тема 5.1. Наша Галактика


1.Складові, розмір і спіральна структура Галактики. Склад, маса, чисельність зір. Типи населення Галактики, зоряні скупчення. Звязок із Землею.


  Чума́цький Шлях — власна назва галактики, у якій розташована наша Сонячна система, а також усі зорі, які ми бачимо неозброєним оком.
Чумацький Шлях є спіральною галактикою типу SBbc за класифікацією Габбла, що разом із галактикою АндромедиГалактикою Трикутника та низкою інших галактик утворюють місцеву галактичну групу. У свою чергу, місцева група входить до Надскупчення Діви.
 Розміри

  Покадрове відео Чумацького Шляху над Японією
Основний диск Чумацького Шляху має близько 100 000 — 120 000 світлових років у діаметрі та близько 250 000 — 300 000 у периметрі. Поза межами ядра галактики товщина Чумацького Шляху становить приблизно 1 000 світлових років. У Чумацькому Шляху налічується понад 300 млрд зір.
Якщо зменшити діаметр Чумацького Шляху до 130 кілометрів, то Сонячна система займала б лише 2 міліметриГало Чумацького шляху простягається набагато далі розмірів Галактики, але обмежується орбітами двох галактик-супутників: Великої та МалоїМагелланових Хмар, відстань до яких у перигалактіконі становить близько 180 000 світлових роківАбсолютна зоряна величина нашої галактики становить −21,3m.
Вік

  Центр Чумацького Шляху на знімку телескопа Спітцера (SIRTF або SST, NASA). Кольори змінено.
  Дуже важко визначити вік, коли сформувався Чумацький Шлях, але наразі вік найдавніших зір у галактиці оцінюється у 13,6 мільярдів років, що приблизно дорівнює віку Всесвіту. За сучасними уявленнями, Чумацький Шлях утворився внаслідок зіткнення і злиття невеликих галактик. Свідченнями цього є перші зорі з дуже низькою металічністю, що утворилися на найранішому етапі існування Всесвіту. Такі зорі вчені знаходять у галактичному гало — «околиці» Чумацького шляху, що тягнеться за межі його видимої частини. У лютому 2010 року астрономи Європейської південної обсерваторії (Чилі) виявили такі ж зорі в карликових галактиках у сузір'ях ПечіСкульптораСекстанта і Кіля.
Структура
  Маса Чумацького Шляху становить близько 5,8×1011 M в ньому налічується від 200 до 400 мільярдів зірок (якщо вважати, що зорі малої маси домінують). Тільки 0,0001 % всіх зірок Галактики перелічено і занесено до каталогів. Кількість чорних дір масою більше тридцяти мас нашого Сонця дорівнює декільком мільйонам  [неавторитетне джерело]
  Диск
  
  Лише у 1980-их роках астрономи висловили припущення, що Чумацький Шлях є спіральною галактикою з баром, а не звичайною спіральною галактикою. Це припущення було підтверджене 2005 року космічним телескопом імені Лаймана Спітцера, який показав, що центральна перемичка нашої галактики є більшою, ніж вважалося раніше.
За оцінками вчених, галактичний диск, що видається в різні боки у районі галактичного центру, має діаметр близько 100 000 світлових років. У порівнянні з гало диск обертається помітно швидше. Швидкість його обертання не однакова на різних відстанях від центру. Вона стрімко зростає від нуля в центрі до 200—240 км/с на відстані 2 тис. світлових років від нього, потім дещо зменшується, знову зростає приблизно до того ж значення й далі залишається майже постійною. Вивчення особливостей обертання диску дозволило оцінити його масу, виявилось, що вона в 150 млрд разів більша M.
   Поблизу площини диска концентруються молоді зорі й зоряні скупчення, вік яких не перевищує декількох мільярдів років. Вони утворюють так звану плоску складову. Серед них дуже багато яскравих і гарячих зір. Газ у диску Галактики також зосереджений в основному поблизу його площини. Він розподілений нерівномірно, утворюючи численні газові хмари — від велетенських неоднорідних за структурою хмар, протяжністю понад декілька тисяч світлових років до невеликих хмарин розмірами не більше парсека.
  Галактика та її околиці. Гало.
 Галактичний диск оточено сфероїдним гало, що складається зі старих зір та кулястих скупчень, 90 % яких перебуває на відстані менше 100 000 світлових років від центру галактики. Це дозволяє припустити, що діаметр зоряного гало становить 200 000 світлових років. Однак, останнім часом було знайдено декілька кулястих скупчень, таких як PAL 4 та AM 1, що перебувають на відстані більше ніж 200 000 світлових років від центру галактики. Центр симетрії гало Чумацького Шляху збігається з центром галактичного диска. Складається гало в основному з дуже старих, неяскравих маломасивних зірок. Вони зустрічаються як поодинці, так і у вигляді кулястих скупчень, які можуть містити до мільйона зірок. Вік населення сферичної складової Галактики перевищує 12 млрд років, його зазвичай вважають віком самої Галактики.
У той час як галактичний диск містить газ та пил, що ускладнює проходження видимого світла, сфероїдна компонента таких складових не містить. Активне зореутворення відбувається у диску (особливо у спіральних рукавах, що є зонами підвищеної щільності). У гало зореутворення вже скінчилося. Розсіяні скупчення також трапляються переважно у диску. Вважається, що основну масу нашої галактики складає темна матерія, що формує гало темної матерії масою приблизно 600 — 3000 мільярдів M. Гало темної матерії сконцентроване у напрямку центру галактики.
Зірки сферичної складової концентруються до центру Галактики. Центральна, найщільніша частина гало в межах декількох тисяч світлових років від центру Галактики називається балджем (від англ. bulge — потовщення).
Зірки і зоряні скупчення гало рухаються навколо центру Галактики дуже витягнутими орбітами. Через те, що обертання окремих зірок відбувається дещо безладно (тобто швидкості сусідніх зірок можуть мати будь-які напрями), гало в цілому обертається дуже поволі.
  Ядро
  Центр галактики Чумацький Шлях у інфрачервоних променях (візуально Центр галактики розташований у сузір'ї Стрільця)
  Центр галактики містить компактний об'єкт із дуже великою масою (близько 4,3 мільйона M), розташований у напрямі сузір'яСтрільця. Цей об'єкт має назву Стрілець A* (англ. Sagittarius A*), більшість вчених вважають його надмасивною чорною дірою. Існує припущення, що більшість галактик мають надмасивні чорні діри у своєму ядрі. Навколо масивної чорної діри обертається чорна діра меншого розміру з масою від 1000 до 10 000 M і періодом обертання близько 100 років та декілька тисяч порівняно невеликих.
Для центральних ділянок Галактики характерна сильна концентрація зірок: у кожному кубічному парсеку поблизу центру їх міститься багато тисяч. Відстані між зірками в десятки і сотні разів менші, ніж в околицях Сонця. Як і в більшості інших галактик, розподіл маси у Чумацькому Шляху є таким, що орбітальна швидкість більшості зірокцієї Галактики не залежить значною мірою від їх відстані від центру. Далі від центральної перемички та зовнішнього кола, звичайна швидкість обертання зір становить 210 — 240 км/год. Таким чином, орбітальний період звичайної зірки прямо пропорційний лише довжині шляху, який вона долає. Це твердження не справджується стосовно сонячної системи, де різні орбіти мають суттєво різні швидкості обертання, що підтверджує існування темної матерії.
Вважається, що довжина галактичної перемички становить близько 27 000 світлових років. Ця перемичка проходить крізь центр галактики під кутом 44 ± 10 градусів до лінії між нашим Сонцем та центром галактики. Вона складається переважно із червоних зірок, які вважають дуже старими. Перемичку оточено кільцем, що має назву «Кільце у п'ять кілопарсеків». Це кільце містить більшу частину молекулярного гідрогену Галактики і є найактивнішим регіоном зореутворення у нашій Галактиці. Якщо вести спостереження із галактики Андромеди, то галактична перемичка Чумацького Шляху була б найяскравішою його частиною.
 
  Згідно з останніми науковими оцінками, відстань від Сонця до галактичного центру, становить 26 000 ± 1 400 світлових року, у той час як згідно з попередніми оцінками наша зоря мала перебувати на відстані близько 35 000 світових років від бару]. Це означає, що Сонце розташоване ближче до краю диску, ніж до його центру. Разом з іншими зорями Сонце обертається навколо центра Галактики зі швидкістю 220—240 км/с, роблячи один оберт приблизно за 200 млн років. Таким чином, за весь час існування Земля облетіла навколо центра Галактики не більше 30 разів.
  В околицях Сонця вдається відстежити ділянки двох спіральних рукавів, які віддалені від нас приблизно на 3 тис. світлових років. За сузір'ями, де спостерігаються ці ділянки, їм дали назву рукав Стрільця та рукав Персея. Сонце розташовано майже посередині між цими спіральними гілками. Але порівняно близько від нас (за галактичними мірками), у сузір'ї Оріона, проходить ще один, не дуже чітко виражений рукав — рукав Оріона, який вважається відгалуженням одного з основних спіральних рукавів Галактики.
Швидкість обертання Сонця навколо центру Галактики майже збігається зі швидкістю хвилі ущільнення, що утворює спіральний рукав. Така ситуація загалом є нетиповою для Галактики у цілому: спіральні рукави обертаються з постійною кутовою швидкістю, як шпиці в колесах, а рух зірок відбувається за іншою закономірністю[26], тому майже все зоряне населення диску то потрапляє всередину спіральних рукавів, то випадає з них. Єдине місце, де швидкості зірок та спіральних рукавів збігаються — це так зване коротаційне коло, і саме на ньому розташоване Сонце.
  Для Землі ця обставина надзвичайно важлива, оскільки у спіральних рукавах відбуваються бурхливі процеси, що утворюють потужне випромінювання, згубне для всього живого. І ніяка атмосфера не змогла б від нього захистити[Джерело?]. Але наша планета існує у порівняно спокійному місці Галактики та протягом сотень мільйонів (або й мільярдів) років не піддавалась впливу цих космічних катаклізмів. Можливо саме тому на Землі змогло народитися та зберегтися життя.